From GEOFEX Great Web Site http://www.geofex.com/
CAUTION CAUTION CAUTION
--------------------------------------------------------------------------------
Both the filament transformer and the transformer under test will have at least AC line voltage on them, an may well have much higher voltage, several hundred volts on one or more windings. You are therefore in danger of being KILLED if you are not both knowledgeable and careful about how you do these tests.
DO NOT TRY THIS IF YOU DO NOT HAVE THE KNOW-HOW AND EXPERIENCE TO WORK SAFELY WITH THESE VOLTAGES. IF YOU HAVE ANY QUESTION IN YOUR MIND WHETHER YOU CAN DO THIS WORK SAFELY, YOU CAN'T.
Seek experienced help if you have any question in your own mind.
The tests run like this. Identify which wires are which by color code, circuit connection, or by using an ohmmeter to find which connects to which. Label the wires. From the same ohmmeter test, write down the resistances you measured on the windings. Generally, windings with resistances over a few ohms are high voltage windings, either a power transformer primary or high voltage output, or an output transformer primary. Note that it is common for primary windings on power transformers to have from two to six wires, with the wires over two being taps to adjust for various line voltages from 110-117-120-125-208-220-240. Secondary windings on power transformers and primaries on output transformers will have either two or three leads, and secondaries on output transformers will have to to four leads.
Also note if any winding is shorted to the transformer core. Sometimes an internal shield will be deliberately connected to the core, but if a multi-lead winding is connected to the core, this is usually an internal short, and a dead transformer.
Once you have identified the windings, hook up one and only one winding to either 1/2 of the 6.3VCT or to the variac. Try to select a low voltage winding, one that has low resistance from the ohmmeter test. Make sure that no other leads are connected (or shorted together, or touching your screwdriver on your bench or... well, you get the idea). A turn of plastic tape on each wire end you're not using at the moment is a good idea. Set your voltmeter on this winding, and the current meter to measure the current through it, and bring the circuit up. The voltmeter should measure 3 volts AC, the light bulb (if used) should NOT be lit brightly, and nothing should be humming or smoking
. There should be little current going through the winding. If the voltage is lower than 3 volts, or you are pulling amps of current, then there is a load on the transformer, internally since you have disconnected all the leads, meaning that there is an internal short. You should try to select a winding for this test that is normally a low voltage winding, either a filament winding in a power transformer, or a secondary in an output transformer.
If all is well, measure the voltage that now appears on the other windings. The voltages will be equal to the ratios of the voltages that will appear on these windings in normal operations.